A Banach-stone Theorem for Riesz Isomorphisms of Banach Lattices
نویسنده
چکیده
Let X and Y be compact Hausdorff spaces, and E, F be Banach lattices. Let C(X,E) denote the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. We prove that if there exists a Riesz isomorphism Φ : C(X,E) → C(Y, F ) such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomorphic to Y , and E is Riesz isomorphic to F . In this case, Φ can be written as a weighted composition operator: Φf(y) = Π(y)(f(φ(y))), where φ is a homeomorphism from Y onto X, and Π(y) is a Riesz isomorphism from E onto F for every y in Y . This generalizes some known results obtained recently.
منابع مشابه
On a Question on Banach–stone Theorem
In this paper we use the standard terminology and notations of the Riesz spaces theory (see [2]). The Banach lattice of the continuous functions from a compact Hausdorff space into a Banach lattice E is denoted by C(K,E). If E = R then we write C(K) instead of C(K,E). 1 stands for the unit function in C(K). One version of the Banach–Stone theorem states that: Theorem 1. Let X and Y be compact H...
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملBanach Spaces
Paul Garrett [email protected] http://www.math.umn.edu/ g̃arrett/ [This document is http://www.math.umn.edu/ ̃garrett/m/fun/notes 2012-13/05 banach.pdf] 1. Basic definitions 2. Riesz’ Lemma 3. Counter-example: non-existence of norm-minimizing element 4. Normed spaces of continuous linear maps 5. Dual spaces of normed spaces 6. Banach-Steinhaus/uniform-boundedness theorem 7. Open mapping theore...
متن کاملSome results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کاملStrong convergence theorem for finite family of m-accretive operators in Banach spaces
The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کامل